conversion de sistemas binarios octal y hexadecimal a decimal
Sistema de numeración octal
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.
En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lugar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
Por ejemplo, el número octal 2738 tiene un valor que se calcula así:
2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610
2738 = 149610
Conversión octal a decimal
La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal. Por ejemplo, para convertir el número 2378 a decimal basta con desarrollar el valor de cada dígito:
2*82 + 3*81 + 7*80 = 128 + 24 + 7 = 15910
2378 = 15910
Conversión de números binarios a octales y viceversa
Observa la tabla siguiente, con los siete primeros números expresados en los sistemas decimal, binario y octal:
- DECIMALBINARIOOCTAL0000010011201023011341004510156110671117
Cada dígito de un número octal se representa con tres dígitos en el sistema binario. Por tanto, el modo de convertir un número entre estos sistemas de numeración equivale a "expandir" cada dígito octal a tres dígitos binarios, o en "contraer" grupos de tres caracteres binarios a su correspondiente dígito octal.
Por ejemplo, para convertir el número binario 1010010112 a octal tomaremos grupos de tres bits y los sustituiremos por su equivalente octal:
1012 = 58
0012 = 18
0112 = 38
y, de ese modo: 1010010112 = 5138
Convierte los siguientes números binarios en octales: 11011012, 1011102, 110110112, 1011010112
La conversión de números octales a binarios se hace, siguiendo el mismo método, reemplazando cada dígito octal por los tres bits equivalentes. Por ejemplo, para convertir el número octal 7508 a binario, tomaremos el equivalente binario de cada uno de sus dígitos:
78 = 1112
58 = 1012
08 = 0002
y, por tanto: 7508 = 1111010002
Convierte los siguientes números octales en binarios: 258, 3728, 27538
Conversión de números binarios a hexadecimales y viceversa
Del mismo modo que hallamos la correspondencia entre números octales y binarios, podemos establecer una equivalencia directa entre cada dígito hexadecimal y cuatro dígitos binarios, como se ve en la siguiente tabla:
- DECIMALBINARIOHEXADECIMAL000000100011200102300113401004501015601106701117810008910019101010A111011B121100C131101D141110E151111F
La conversión entre números hexadecimales y binarios se realiza "expandiendo" o "contrayendo" cada dígito hexadecimal a cuatro dígitos binarios. Por ejemplo, para expresar en hexadecimal el número binario 1010011100112 bastará con tomar grupos de cuatro bits, empezando por la derecha, y reemplazarlos por su equivalente hexadecimal:
10102 = A16
01112 = 716
00112 = 316
y, por tanto: 1010011100112 = A7316
En caso de que los dígitos binarios no formen grupos completos de cuatro dígitos, se deben añadir ceros a la izquierda hasta completar el último grupo. Por ejemplo:
1011102 = 001011102 = 2E16
Convierte a hexadecimales los siguientes números binarios:
10101001010111010102, 1110000111100002, 10100001110101112
La conversión de números hexadecimales a binarios se hace del mismo modo, reemplazando cada dígito hexadecimal por los cuatro bits equivalentes de la tabla. Para convertir a binario, por ejemplo, el número hexadecimal 1F616 hallaremos en la tabla las siguientes equivalencias:
116 = 00012
F16 = 11112
616 = 01102
y, por tanto: 1F616 = 0001111101102
Convierte a binario los números hexadecimales siguientes: 7A5D16, 101016, 8F8F16
http://platea.pntic.mec.es/~lgonzale/tic/binarios/numeracion.html
Sistema octal
El sistema numérico en base 8 se llama octal y utiliza los dígitos del 0 al 7. En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.
El sistema de numeración octal es un sistema de numeración en base 8, una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y cada dígito tiene el mismo valor que en el sistema de numeración decimal.
El teorema fundamental aplicado al sistema octal sería el siguiente:
Como el sistema de numeración octal usa la notación posicional entonces para el número 3452,32 tenemos que: 2*80 + 5*81 + 4*82 + 3*83 + 3*8-1 + 2*8-2 = 2 + 40 + 4*64 + 3*512 + 3*0,125 + 2*0,015625 = 2 + 40 + 256 + 1536 + 0,375 + 0,03125 = 1834 + 0,40625d
Entonces, 3452,32q = 1834,40625d
El sub índice "q" indica número octal, se usa la letra q para evitar confusión entre la letra 'o' y el número 0. En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Es posible que la numeración octal se usara en el pasado en lugar de la decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares.
Es utilizado como una forma abreviada de representar números binarios que emplean caracteres de seis bits. Cada tres bits (medio carácter) es convertido en un único dígito octal (del griego oktō 'ocho') Esto es muy importante por eso.
Métodos de conversión[editar]
Decimal[editar]
Para poder convertir un número en base decimal a base octal se divide dicho número entre 8, dejando el residuo y dividiendo el cociente sucesivamente entre 8 hasta obtener cociente 0, luego los restos de las divisiones leídos en orden inverso indican el número en octal.
Ejemplo:
Escribir en octal del número decimal 730
730÷8= 91.25
91=cociente
8 x 91= 728
730 - 728= 2
2= residuo
91÷8= 11.375
11=cociente
8 x 11= 88
91-88= 3
3= residuo
11÷8= 1
1= cociente
8 x 1= 8
11-8= 3
3= residuo
1÷8= 0
0=cociente
8 x 0 = 0
1 - 0=1
1= residuo
octal del número decimal 730= 1332
Escribir en octal el número decimal 179
179÷8= 22
22= cociente
8 x 22= 176
179-176= 3
3= residuo
22÷8= 2
2=cociente
8x2= 16
22-16= 6
6= residuo
2÷8= 0
0= cociente
8x0= 0
2-0= 2
2= residuo
El octal del número decimal 179= 263
Binario
Para pasar de binario a octal, solo hay que agrupar de 3 en 3 los dígitos binarios, así, el número binario 1001010 (74 en decimal), lo agruparíamos como 1 / 001 / 010. como al primer dígito le hacen falta dos números para que se cumpla la regla de 3 en 3 le agregamos 2 ceros, de modo que quedaría
(001) (001) (010)
después obtenemos el número en decimal de cada uno de los paréntesis de los números en binario con la siguiente fórmula:
de derecha a izquierda visualiza un número del 0 al 2 en la parte superior del número binario, para indicar la posición del binario en el paréntesis:
210<<<
1. (001) posición 0 para el binario 1, posición 1 para el binario 0, posición 2 para el binario 0
210<<<
2. (001)posición 0 para el binario 1, posición 1 para el binario 0, posición 2 para el binario 0
210<<<
3. (010)posición 0 para el binario 0, posición 1 para el binario 1, posición 2 para el binario 0
Después se multiplica cada número binario por 2 elevado a la posición del número binario y cada resultado se suma:
- (001)= ( 0 x 2) + (0 x 2) + ( 1 x 2)= 0 + 0 + 1 = 1
- (001)= ( 0 x 2) + (0 x 2) + ( 1 x 2)= 0 + 0 + 1 = 1
- (010)= (0 x 2) + ( 1 x 2) + ( 0 x 2)= 0 + 2 + 0= 2
001= 1
001= 1
010= 2
De modo que el número binario 1001010 en octal es 112.
Comentarios
Publicar un comentario