ejemplo de sistemas numéricos decimal y octal
Sistemas numéricos
Un sistema numérico son un conjunto de símbolos y reglas que se utilizan para representar datos numéricos o cantidades. Se caracterizan por su base que indican el número de símbolos distinto que utiliza y además es el coeficiente que determina cual es el valor de cada símbolo dependiendo de la posición que ocupe. Estas cantidades se caracterizan por tener dígitos enteros y fraccionarios.
Si aj indica cualquier dígito de la cifra, b la base del sistema de numeración y además de esto la cantidad de dígitos enteros y fraccionarios son n y k respectivamente, entonces el número representado en cualquier base se puede expresar de la siguiente forma:
Nb = [an-1.an-2.an-3..........a3.a2.a1.a0,a-1.a-2.a-3 .......a-k]b
Donde: j = {n-1, n-2,.........2, 1, 0,-1, -2, ......, -k} y n + k indica la cantidad de dígitos de la cifra.
Por ejemplo, el número 31221, 324 en base cuatro tiene n=5 y k=2 con la parte entera: an-1=a4=3; a3=1; a2=2; a1=2; a0=1 y parte fraccionaria a-1=3; a-2=2
SISTEMA DECIMAL.
Este es el sistema que manejamos cotidianamente, está formado por diez símbolos {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} por lo tanto la base del sistema es diez (10).
SISTEMA BINARIO.
Es el sistema que utiliza internamente el hardware de las computadoras actuales, se basa en la representación de cantidades utilizando los dígitos 1 y 0. Por tanto su base es 2 (número de dígitos del sistema). Cada dígito de un número en este sistema se denomina bit (contracción de binary digit). Se puede utilizar con nombre propio determinados conjuntos de dígitos en binario. Cuatro bits se denominan cuaterno (ejemplo: 1001), ocho bits octeto o byte (ejemplo: 10010110), al conjunto de 1024 bytes se le llama Kilobyte o simplemente K, 1024 Kilobytes forman un megabyte y 1024 megabytes se denominan Gigabytes.
SISTEMA OCTAL.
El sistema numérico octal utiliza ocho símbolos o dígitos para representar cantidades y cifras numéricas. Los dígitos son: {0, 1, 2, 3, 4, 5, 6, 7}; la base de éste es ocho (8) y es un sistema que se puede convertir directamente en binario como se verá más adelante.
SISTEMA HEXADECIMAL.
El sistema numérico hexadecimal utiliza dieciséis dígitos y letras para representar cantidades y cifras numéricas. Los símbolos son: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}; la base del sistema es dieciséis (16). También se puede convertir directamente en binario como se verá más adelante. En la tabla 1.1 se muestran los primeros veintiuno números decimales con su respectiva equivalencia binaria, octal y hexadecimal.
Leer más: http://www.monografias.com/trabajos32/sistemas-numericos/sistemas-numericos.shtml#ixzz5AcKYLb1j
HISTORIA
El antiguo matemático hindú Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero
Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bit) y números binarios de 6 bit eran conocidos en la antigua China en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizadas en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Shao Yong en el siglo XI.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, las cuales podrían ser codificadas como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XVII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
Aplicaciones
En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.
En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó una computadora basada en relés —a la cual apodó "Modelo K" (porque la construyó en una cocina, en inglés "kitchen")— que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando.
El 8 de enero de 1940 terminaron el diseño de una "Calculadora de Números Complejos", la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John von Neumann, John Mauchly y Norbert Wiener, quien escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.
El 8 de enero de 1940 terminaron el diseño de una "Calculadora de Números Complejos", la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John von Neumann, John Mauchly y Norbert Wiener, quien escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.
Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de estar en dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario:
El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En una computadora, los valores numéricos pueden representar dos voltajes diferentes; también pueden indicar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la nomenclatura usada.
De acuerdo con la representación más habitual, que es usando números árabes, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Los números binarios se escriben a menudo con subíndices, prefijos o sufijos para indicar su base. Las notaciones siguientes son equivalentes:
§ 100101 binario (declaración explícita de formato)
§ 100101b (un sufijo que indica formato binario)
§ 100101B (un sufijo que indica formato binario)
§ bin 100101 (un prefijo que indica formato binario)
§ 1001012 (un subíndice que indica base 2 (binaria) notación)
§ 100101 (un prefijo que indica formato binario)
§ 0b100101 (un prefijo que indica formato binario, común en lenguajes de programación)
Sistema de numeración octal
El sistema de numeración octal es un sistema de numeración en base 8, una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y cada dígito tiene el mismo valor que en el sistema de numeración decimal.
El teorema fundamental aplicado al sistema octal sería el siguiente:
Como el sistema de numeración octal usa la notación posicional entonces para el número 3452,32 tenemos que: 2*80 + 5*81 + 4*82 + 3*83 + 3*8-1 + 2*8-2 = 2 + 40 + 4*64 + 3*512 + 3*0,125 + 2*0,015625 = 2 + 40 + 256 + 1536 + 0,375 + 0,03125 = 1834 + 0,40625d
Entonces, 3452,32q = 1834,40625d
El sub índice "q" indica número octal, se usa la letra q para evitar confusión entre la letra 'o' y el número 0. En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Es posible que la numeración octal se usara en el pasado en lugar de la decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares.
Es utilizado como una forma abreviada de representar números binarios que emplean caracteres de seis bits. Cada tres bits (medio carácter) es convertido en un único dígito octal (del griego oktō 'ocho') Esto es muy importante por eso.
Fracciones
La numeración octal es tan buena como la binaria y la hexadecimal para operar con fracciones, puesto que el único factor primo para sus bases es 2. Todas las fracciones que tengan un denominador distinto de una potencia de 2 tendrán un desarrollo octal periódico.
Comentarios
Publicar un comentario